The Multiplicitiy Conjecture in Low Codimensions

نویسنده

  • JUAN MIGLIORE
چکیده

We establish the multiplicity conjecture of Herzog, Huneke, and Srinivasan about the multiplicity of graded Cohen-Macaulay algebras over a field for codimension two algebras and for Gorenstein algebras of codimension three. In fact, we prove stronger bounds than the conjectured ones allowing us to characterize the extremal cases. This may be seen as a converse to the multiplicity formula of Huneke and Miller that inspired the conjectural bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensions of Newton Strata in the Adjoint Quotient of Reductive Groups

In [Cha00] Chai made a conjecture on the codimensions of Newton strata in Shimura varieties, which then led Rapoport [Rap05] to his conjecture on dimensions of affine Deligne-Lusztig varieties inside affine Grassmannians. The main goal of this paper is to show that exactly the same codimensions arise in a simpler context, that of the Newton stratification in the adjoint quotient of a reductive ...

متن کامل

Deconfinement Phase Transition in Hot and Dense Qcd at Large N

We conjecture that the confinement-deconfinement phase transition in QCD at large number of colors N and N f ≪ N at T = 0 and µ = 0 is triggered by the drastic change in θ behavior. The conjecture is motivated by the holographic model of QCD where confinement-deconfinement phase transition indeed happens precisely at T = Tc where θ dependence experiences a sudden change in behavior. The conject...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

A Note on D - Branes of Odd Codimensions

On a noncommutative space of rank-1, we construct a codimension-one soliton explicitly and, in the context of noncommutative bosonic open string field theory, identify it with the D24-brane. We compute the tension of the proposed D24-brane, yielding an exact value and show that it is related to the tension of the co-dimension two D23-brane by the string T-duality. This resolves a puzzle posed b...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004